

High Velocity Penetrating Weapon Program Overview

13 Apr 2011

Leo Rose, AFRL/RW Program Manager 850-883-2188

Distribution A: Approved for public release; distribution unlimited

U.S. AIR FORCE

Distribution A: Approved for public release; distribution unlimited

HDBT Weapons Roadmap (Notional)

High Velocity Penetrating Weapon (HVPW)

15

U.S. AIR FORCE

Description	Benefits to the War Fighter
Provides improved penetration capability of hard, deep targets with boosted impact	 Defeats emerging hard targets 2000 lb weapon Internal carriage on F-35 Increased loadout for other bomber/fighters
Technology	
 Survivable ordnance package GN&C (precision navigation, terminal flight control) Propulsion (performance, GN&C interactions, IM) 	

Distribution A: Approved for public release; distribution unlimited

U.S. AIR FORCE

High Velocity Penetrating Weapon Team

96ABW-2011-0151

Integrity - Service - Excellence

High Velocity Penetrating Weapon Sys Engineering & Flight Vehicle Integration

- Flight Vehicle Integration
 - Subsystem requirements, specs, models for subsystem trades, M&S
 - System trades of GN&C, warhead/fuze, and airframe/propulsion
 - Initial Technology Demonstration flight test vehicle concept development
- Aircraft Integration, Carriage & Release
 - F-35 internal carriage
 - Platform electrical and physical constraints

- Focus on *integration* issues associated with terminal accuracy and vehicle orientation
 - Airframe / control surfaces
 - GN&C algorithms
 - Booster misalignment, shock & vibration
- Scope of effort varies dramatically depending on desired TRL
 - AFRL/RW effort will end at subcomponent demonstrations not integrated flight test
 - AAC/XR CCTDs will provide initial trade space

- F-35 physical fit requirement
 - F-35 physical fit requirement will be validated to a "stay within volume"
- Bay Acoustics and Temperature Issues
 - Goal is to use standard design practices as those of current systems
- Bomb Rack, Launcher
 - Goal is to use current F-35 equipment (e.g. BRU-68)
 - 1760 / 1553 Weapon-Store Interface/Data Bus
 - Some electrical and message content changes as typical with new weapons
- Ground Handling Equipment (e.g. loaders)
 - Goal is to design to current systems; minimize use of adaptors

High Velocity Penetrating Weapon Ordnance Package

Distribution A: Approved for public release; distribution unlimited **Conventional Survivable Ordnance** Package (CSOP) **U.S. AIR FORCE**

Ib class weapon

development

which allows for redundancy

Increased reliability with innovative fuze design

Safer munitions through improved high explosive

boosted impact into hard target

Technology

- Survivable intelligent-fuze technology
- Survivable energetic explosive
- Survivable warhead case
- Modeling & Simulation Tools Penetration mechanics, lethality & material characterization
- Leverage ongoing R&D

Fuze Technology

- Hardened Miniature Fuze Technology (HMFT) Post Impact Module
 - Successfully demonstrated survivability and post impact burst point system functionality
 - Very High G (VHG) and airgun shock test environments

Laboratory-Airgun Test

- Task added to existing HMFT Contract for FY11 HMFT Feasibility Study for CSOP
 - Conduct contractor laboratory testing
 - Mechanical design updates
 - Assess and document HMFT axial/lateral shock survivability in cannon tests
- HMFT Feasibility study & analysis
 - Requirements evaluation (signal, power, communications, arming)
 - Interfaces
 - Mechanical packaging & mounting

Distribution A: Approved for public release; distribution unlimited

U.S. AIR FORCE

Approach

- Map out the formulation design space via systematic "Mixture Design" methodology
 - A type of statistical, "Design of Experiments"
- Quantify the tradeoff in design parameters
 - Airblast, sensitivity survivability, & mechanical properties
- Apply residual knowledge
 - Validation data for theory and M&S
 - Reduce formulation time for future application requirements
 - Identify the range of possibilities for current ingredients

Progress

- Ingredients selected, all existing with MIL-SPEC's
- Composition limit inputs found 45 run matrix generated
 - Mixture viscosity was primary constraint
- Gathered extensive laboratory-scale safety test data

High Velocity Penetrating Weapon Guidance Research S&T Plan

- Boosting with a rocket adds some issues:
 - Motor/thrust misalignment
 - Control authority, especially with oblique trajectories (e.g. slant targets)
 - Vibration / acceleration effects
- HVPW could have significant problems during boost
 - Angle of Obliquity (AoO) could be unknown
 - Angle of Attack (AoA) interacts with AoO
- Must control closely to ensure:
 - Maximum penetration
 - Fuze survives impact

Risk Assessment

Largest risk / least maturity in following component areas:

- CEP control
- Angle of Attack (AoA) sensing & control
- Trajectory shaping for optimized rocket firing
- Rocket integrated control

Philosophy: methodical modeling and tool-up to:

- 1. Show maturity of guidance subsystem
- 2. Prepare for more than one MS-A contractor conceptual design

High Velocity Penetrating Weapon Propulsion

HVPW Propulsion

- HVPW derived operational systems will require a new rocket motor
- HVPW propulsion potential design/technology challenges include
 - Thrust alignment/alignment control
 - Energy management
 - Tight propellant burn rate specification
 - Increased performance
 - Wrap-around motor
 - Service life through extreme environments

Questions

Leo Rose, GS-15 AFRL/RW HVPW Program Manager ROSEL @EGLIN.AF.MIL 850-883-2188